An IPv6 Transition Scenario

BUPT
zhaoqin
2013.09.10
What we have learned from IPv4

- 1995.5 China Telecom begin to establish CHINANET backbone
- 1996.1 Internet is provided by CHINANET throughout the country

IPv4 backbone is chicken; ICPs and Users are eggs; IPv4 backbone is evolved from telecommunication,
The first Internet content providers emerge
- 1997.06 163.com is online
- 1998.02 sohu.com is online
- 1998.12 sina.com.cn is online

The Internet users emerge
- 1998 The word 网民 (netizen) is firstly created in China
- Now The number of netizen grows rapidly to 591 million
Today

- IPv4 ecosystem is crashing
 - IPv4 address space is already depleted
 - NAT is used to keep IPv4 continuing
- IPv6 ecosystem is building
 - Many IPv6 trial networks have been verified successfully
 - Transition solutions are proposed to keep the switch between two ecosystems smoothy
- Transition period may last for decades
What we have seen about IPv6

• IPv6-only MAN (Metropolitan Area Network) may appear soon
• Users will be provided with dual stack access network for compatibility
• IPv4 connectivity may be isolated as islands in the oceans of IPv6 MAN
• CDN (Content Delivery Network) operator requires relation between IPv4 and IPv6 address to offer nearest web cache to IPv6 users
A model of IDC

- Downlinks are connected to the MAN (Metropolitan Area Network) of ISP
- Private uplinks are connected to ICP (Internet Content Provider), CDN (Content Delivery Network) operator or ICP’s own CDN group
- Public uplinks are connected to superior network operator
IDC IPv6 Transition Scenario

It's an enhance to NAT64 RFC6052 and RFC6877 (464XLAT)

PLAT: Provider-side Translator
CLAT: Customer-side Translator
LDNS: Local DNS proxy
LDNS64: Local DNS64 translator
1. Enter into hook
2. Match destination, packets not matched is routed as normal
3. Headers of the matched will be translated
4. TCP/UDP/ICMP is modified and port num is rewrited for PLAT
5. Inject the translated packets to network
XLAT translator: mapping of header

<table>
<thead>
<tr>
<th>IPv4 Header</th>
<th>Translated to IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version (0x4)</td>
<td>Version (0x6)</td>
</tr>
<tr>
<td>IHL</td>
<td>(discarded)</td>
</tr>
<tr>
<td>ToS</td>
<td>Traffic Class</td>
</tr>
<tr>
<td>Total Length</td>
<td>Payload Length (Total Length-IHL*4)</td>
</tr>
<tr>
<td>Identification</td>
<td>(discarded)</td>
</tr>
<tr>
<td>Flags</td>
<td>(discarded)</td>
</tr>
<tr>
<td>Offset</td>
<td>(discarded)</td>
</tr>
<tr>
<td>TTL</td>
<td>Hop Limit</td>
</tr>
<tr>
<td>Protocol</td>
<td>Next Header</td>
</tr>
<tr>
<td>Header Checksum</td>
<td>(discarded)</td>
</tr>
<tr>
<td>Source Address</td>
<td>stateful/stateless Mapping</td>
</tr>
<tr>
<td>Destination Address</td>
<td>stateful/stateless Mapping</td>
</tr>
<tr>
<td>Options</td>
<td>(discarded)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPv6 Header</th>
<th>Translated to IPv4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version (0x6)</td>
<td>Version (0x4)</td>
</tr>
<tr>
<td>Traffic Class</td>
<td>ToS</td>
</tr>
<tr>
<td>Flow Label</td>
<td>(discarded)</td>
</tr>
<tr>
<td>Payload Legnth</td>
<td>Total Length (Payload Length+20)</td>
</tr>
<tr>
<td>Next Header</td>
<td>Protocol</td>
</tr>
<tr>
<td>Hop Limit</td>
<td>TTL</td>
</tr>
<tr>
<td>Source Address</td>
<td>stateful/stateless Mapping</td>
</tr>
<tr>
<td>Destination Address</td>
<td>stateful/stateless Mapping</td>
</tr>
<tr>
<td>-</td>
<td>IHL (5)</td>
</tr>
<tr>
<td>-</td>
<td>Header Checksum (recalculate)</td>
</tr>
</tbody>
</table>

Conform to RFC6145 (IP/ICMP Translation Algorithm)
XLAT translator: mapping of address

Conform to RFC6052
(IPv6 Addressing of IPv4/IPv6 Translators)
Test in BUPT
Traffic statistics

- Traffic of web page

- Traffic of video
Operating UI

[root@Centos nat64]# ./nat64-stop.sh
Unload module nf_nat64 successfully!
[root@Centos nat64]# ./nat64-start.sh

nf_nat64 setup

Virtual Netdevice Name is nat64
Info: Using 113.31.40.236/30 as the NAT64 IPv4 address.

modprobe -r nf_nat64
modprobe nf_nat64 nat64_ipv4_addr=113.31.40.236 nat64_ipv4_addr=113.31.40.236/nat64_ipv4_len=64 ethname=nat64
ifconfig nat64 mtu 1500 up
ip route add 113.31.40.236/30 dev nat64
sysctl -w net.ipv4.conf.all.forwarding=1
sysctl -w net.ipv4.conf.all.forwarding = 1
sysctl -w net.ipv6.conf.all.forwarding=1
net.ipv6.conf.all.forwarding = 1

[root@Centos nat64]#

[root@nat64 ~]# nativi-stop
Unload module nf_nativi sucessfully!
[root@nat64 ~]# nativi-start

nativi setup

Translation1:
ipv4_addr:0.0.0.0/0
src_prefix:2401:aa00:2:2:2::/96
dst_prefix:2001:da8:202:a07:0:100::/96
WARN:Second translation will not be up because invalid variable!

modprobe -r nf_nativi
modprobe nf_nativi nativi_ipv4_addr=0.0.0.0 nativi_ipv4_mask=0
nativi_ipv4_addr=2401:aa00:2:2:2:: nativi_src_prefix_len=96 nativi_dst_prefix_len=96
ifconfig nativi mtu 1500 up
ip -6 route add 2401:aa00:2:2:2::/96 dev nativi
sysctl -w net.ipv4.conf.all.forwarding=1
net.ipv4.conf.all.forwarding = 1
sysctl -w net.ipv6.conf.all.forwarding=1
net.ipv6.conf.all.forwarding = 1

[root@nat64 ~]#
Online video stream
Translation Efficiency

- Packets are injected from CLAT to PLAT using iperf tool
- Test is on two virtual machines with 1GB memory
- Efficiency decrease when throughput reaching 1Gbps
- New translator based on DPDK is in progress
 (Data Plane Development Kit)

* UDP is specified as 1400 bytes length
Thanks!